Quantum Physics

Andrei Gritsan
Johns Hopkins University

July 25, 2022

Johns Hopkins University

Johns Hopkins University QuarkNet Physics Workshop
Spin = Intrinsic angular momentum of a particle (system)

Classically: \[\vec{L} = \vec{r} \times \vec{p} \]
\[L = m r v \]

Magnetic moment = current (I) x loop areas (A)

\[\vec{\mu} = I \times \vec{A} \]
\[\mu = \frac{q v}{2 \pi r} \pi r^2 = q r v \frac{1}{2} \]

\[\mu = g \times \frac{q}{2m} S \]

\[g \neq 1 \] in QM
Quantum Physics: Stern–Gerlach experiment

1922 (100 years!)

Atom, outer electron interaction energy:

\[E = -\vec{\mu} \cdot \vec{B} \]

\[F_z = \frac{\partial}{\partial z} (\vec{\mu} \cdot \vec{B}) = \mu_z \frac{\partial B_z}{\partial z} \]

\[\mu_z = g \times \frac{q}{2m} S_z \quad \Rightarrow \quad S_z = \pm \frac{\hbar}{2} \quad \text{electron} \]
Quantum Physics: Spin of Electron

\[S_z = \pm \frac{\hbar}{2} \]

Planck’s constant
\[\hbar = \frac{h}{2\pi} = 6.5821 \times 10^{-16} \text{ eV} \cdot \text{s} \]

electron’s spin
\[S = \frac{\hbar}{2} \]

spin projection on axis \(z \)
\[S_z = \pm \frac{\hbar}{2} \]

Foundation of Quantum Physics!
Spin of Elementary Particles

- Until recently, all elementary particles were of two types:

\[S = \frac{\hbar}{2} \]

Fermions (half-integer spin)
- occupy space (Fermi statistics: exclusion princ.)
- constitute matter (quarks, leptons)

\[S = 1\hbar \]

Bosons (integer spin)
- carry interactions (\(\gamma \) photons, \(g \) gluons, \(W^\pm, Z \))

- One can create compose particles of any spin \(S = \frac{N\hbar}{2} \), \(N = 0,1,2,... \)
 - for example \(\pi^0 \) meson made of \(q\bar{q} \) has \(S = 0 \)
 - but there was no elementary particle with no spin, until 2012…
Spin of the Higgs boson?

• Spin = 0

2012 (10 years!)

• The only known elementary particle with no spin!
 — how do we know it has no spin?
Spin of the Higgs boson?

- Spin = 0 from observing H decay:

- $m_H = 125$ GeV
- $m_{Z^*} < 35$ GeV
- $m_Z = 91$ GeV
- ~ 62.5 GeV
- ~ 7000 GeV
Spin of elementary particles

- Spin = 0
 \(\frac{\hbar}{2} \)
 \(H \) boson (excitation of the vacuum field)

- Spin = \(\frac{\hbar}{2} \)
 \(e^\pm, \mu^\pm, \tau^\pm, \nu_e, \nu_\mu, \nu_\tau \), quarks… matter

- Spin = \(\hbar \)
 \(\gamma, Z, W^+, W^-, g_1, g_2, g_3, g_4, g_5, g_6, g_7, g_8 \) interactions

- Spin = \(\frac{3\hbar}{2} \)
 Not known
 (may be supersymmetric particle, e.g. gravitino)

- Spin = \(2\hbar \)
 Not discovered, expect graviton

- Arguments for higher Spin to be composite particles…
Two events in July

• July 4, 2022 Symposium at CERN to celebrate 10 years of H boson
 — local JHU article on the topic
Two events in July

- July 4, 2022 Symposium at CERN to celebrate 10 years of H boson
 — local JHU article on the topic

June 14, 2012, CERN July 4, 2022, CERN
Two events in July
Two events in July

- July, 2022 Community Summer Study in Seattle (“Snowmass”)

- Big questions and big facilities
 - next Higgs factory ???

- Followup to Snowmass 2001
 Snowmass 2013…
Back to Quantum Physics: Time Evolution

Non-relativistic energy expression:

\[E = \frac{\vec{p}^2}{2m} + V \]

Quantum prescription:

\[E \rightarrow i\hbar \frac{\partial}{\partial t} \]

\[\vec{p} \rightarrow -i\hbar \vec{\nabla} = -i\hbar \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right) \]

Schrödinger equation, for a wave function \(\psi(t, x, y, z) \)

\[E\psi = \frac{\vec{p}^2}{2m}\psi + V\psi \]

\[i\hbar \frac{\partial}{\partial t} \psi = -\frac{\hbar^2}{2m} \nabla^2 \psi + V\psi \]
Quantum Physics: Hydrogen Atom

\[i\hbar \frac{\partial}{\partial t} \psi = -\frac{\hbar^2}{2m} \nabla^2 \psi + V\psi\]

special case:

\[V(x, y, z, t) = V(r) = -\frac{e^2}{4\pi\varepsilon_0 r}\]

solve in spherical coordinates:

\[\left(-\frac{\hbar^2}{2\mu} \nabla^2 - \frac{e^2}{4\pi\varepsilon_0 r}\right) \psi(r, \theta, \varphi) = E\psi(r, \theta, \varphi)\]
Quantum Physics: Hydrogen Atom

\[-\frac{\hbar^2}{2\mu} \left[\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \psi}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \psi}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \psi}{\partial \phi^2} \right] - \frac{e^2}{4\pi\varepsilon_0 r} \psi = E\psi \]

\[\psi(r, \theta, \phi) = R(r) \Theta(\theta) \Phi(\phi) \]

Quantum numbers: \(n, \ell, m \)

\[\psi_{n,\ell,m}(r, \theta, \phi) \propto R_{n,\ell}(r) Y_{\ell,m}(\theta, \phi) \]

principal quantum number: \(n = 1,2,3,\ldots \)

orbital angular momentum: \(\ell = 0,1,2,3,\ldots < n \)

projection of angular momentum: \(m = -\ell, (-\ell + 1), \ldots, 0, \ldots, (\ell - 1), \ell \)
Quantum Physics: Hydrogen Atom

\[\psi_{n,\ell,m}(r, \theta, \varphi) \propto R_{n,\ell}(r) Y_{\ell,m}(\theta, \varphi) \]

\[|m| \leq \ell = 0,1,2,3,... < n \]

Probability to find electron in \((r, \theta, \varphi)\)

\[\left| \psi_{n,\ell,m}(r, \theta, \varphi) \right|^2 \]

\[E_n = -\frac{\hbar^2}{2ma_0} \frac{1}{n^2} \]

\[n = 1,2,3,... \]

\[R_{1,0}(r) \propto e^{-r/a_0} \]

\[Y_0^0(\theta, \varphi) = \frac{1}{2} \sqrt{\frac{1}{\pi}} \]
\[Y_1^{-1}(\theta, \varphi) = \frac{1}{2} \sqrt{\frac{3}{2\pi}} \sin \theta e^{-i\varphi} \]
\[Y_1^0(\theta, \varphi) = \frac{1}{2} \sqrt{\frac{3}{\pi}} \cos \theta \]
\[Y_1^1(\theta, \varphi) = -\frac{1}{2} \sqrt{\frac{3}{2\pi}} \sin \theta e^{i\varphi} \]
\[Y_2^{-2}(\theta, \varphi) = \frac{1}{4} \sqrt{\frac{15}{2\pi}} \sin^2 \theta e^{-2i\varphi} \]
\[Y_2^{-1}(\theta, \varphi) = \frac{1}{2} \sqrt{\frac{15}{2\pi}} \sin \theta \cos \theta e^{-i\varphi} \]
\[Y_2^0(\theta, \varphi) = \frac{1}{4} \sqrt{\frac{5}{\pi}} (3 \cos^2 \theta - 1) \]
\[Y_2^1(\theta, \varphi) = -\frac{1}{2} \sqrt{\frac{15}{2\pi}} \sin \theta \cos \theta e^{i\varphi} \]
\[Y_2^2(\theta, \varphi) = \frac{1}{4} \sqrt{\frac{15}{2\pi}} \sin^2 \theta e^{2i\varphi} \]
Atomic Physics
Andrei Gritsan, JHU

Quantum Physics: Atoms

- Particles (electrons) occupy the lowest energy states

- No two identical particles (electrons) may have the same set of quantum numbers \((n, \ell, m, s_z)\)

(Pauli exclusion principle)

\[
| m | \leq \ell = 0,1,2,3,... < n
\]

\[
s_z = \pm \frac{\hbar}{2}
\]

<table>
<thead>
<tr>
<th>Shell name</th>
<th>Subshell name</th>
<th>Subshell max electrons</th>
<th>Shell max electrons</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>1s</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>L</td>
<td>2s</td>
<td>2</td>
<td>2 + 6 = 8</td>
</tr>
<tr>
<td></td>
<td>2p</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>3s</td>
<td>2</td>
<td>2 + 6 + 10 = 18</td>
</tr>
<tr>
<td></td>
<td>3p</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3d</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>4s</td>
<td>2</td>
<td>2 + 6 + 10 + 14 = 32</td>
</tr>
<tr>
<td></td>
<td>4p</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4d</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4f</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>5s</td>
<td>2</td>
<td>2 + 6 + 10 + 18 = 50</td>
</tr>
<tr>
<td></td>
<td>5p</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5d</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5f</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5g</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>
Quantum Physics: Atoms

Periodic Table of Elements Showing Electron Shells

<table>
<thead>
<tr>
<th>Period</th>
<th>Group 1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>He</td>
<td>Li</td>
<td>Be</td>
<td>B</td>
<td>C</td>
<td>N</td>
<td>O</td>
<td>F</td>
<td>Ne</td>
<td>Na</td>
<td>Mg</td>
<td>Al</td>
<td>Si</td>
<td>P</td>
<td>S</td>
<td>Cl</td>
<td>Ar</td>
</tr>
<tr>
<td>2</td>
<td>He</td>
<td>Ne</td>
<td>Na</td>
<td>Mg</td>
<td>Al</td>
<td>Si</td>
<td>P</td>
<td>S</td>
<td>Cl</td>
<td>Ar</td>
<td>K</td>
<td>Ca</td>
<td>Sc</td>
<td>Ti</td>
<td>V</td>
<td>Cr</td>
<td>Mn</td>
<td>Fe</td>
</tr>
<tr>
<td>3</td>
<td>Li</td>
<td>Be</td>
<td>B</td>
<td>C</td>
<td>N</td>
<td>O</td>
<td>F</td>
<td>Ne</td>
<td>Na</td>
<td>Mg</td>
<td>Al</td>
<td>Si</td>
<td>P</td>
<td>S</td>
<td>Cl</td>
<td>Ar</td>
<td>K</td>
<td>Ca</td>
</tr>
<tr>
<td>4</td>
<td>Be</td>
<td>B</td>
<td>C</td>
<td>N</td>
<td>O</td>
<td>F</td>
<td>Ne</td>
<td>Na</td>
<td>Mg</td>
<td>Al</td>
<td>Si</td>
<td>P</td>
<td>S</td>
<td>Cl</td>
<td>Ar</td>
<td>K</td>
<td>Ca</td>
<td>Sc</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>C</td>
<td>N</td>
<td>O</td>
<td>F</td>
<td>Ne</td>
<td>Na</td>
<td>Mg</td>
<td>Al</td>
<td>Si</td>
<td>P</td>
<td>S</td>
<td>Cl</td>
<td>Ar</td>
<td>K</td>
<td>Ca</td>
<td>Sc</td>
<td>Ti</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td>N</td>
<td>O</td>
<td>F</td>
<td>Ne</td>
<td>Na</td>
<td>Mg</td>
<td>Al</td>
<td>Si</td>
<td>P</td>
<td>S</td>
<td>Cl</td>
<td>Ar</td>
<td>K</td>
<td>Ca</td>
<td>Sc</td>
<td>Ti</td>
<td>V</td>
</tr>
<tr>
<td>7</td>
<td>N</td>
<td>O</td>
<td>F</td>
<td>Ne</td>
<td>Na</td>
<td>Mg</td>
<td>Al</td>
<td>Si</td>
<td>P</td>
<td>S</td>
<td>Cl</td>
<td>Ar</td>
<td>K</td>
<td>Ca</td>
<td>Sc</td>
<td>Ti</td>
<td>V</td>
<td>Cr</td>
</tr>
</tbody>
</table>

Key:
- Alkali Metals
- Alkaline Earth Metals
- Transition Metals
- Non-metals
- Metalloids
- Halogens
- Noble Gases
- Lanthanides
- Actinides

The primary determinant of an element’s chemical properties is the electron configuration, particularly of the outermost electrons (those in the valence shell).

In the periodic table, a period is represented by a row. The number of electron shells an atom has determines what period it belongs to.

In the periodic table, a group is represented by a vertical column. The number of electrons in the outermost shell determines the group.
Atomic / Nuclear Physics

Periodic Table of the Elements

1. Hydrogen
- Atomic number: 1
- Symbol: H
- Mass number: 1.00794

2. Lithium
- Atomic number: 3
- Symbol: Li
- Mass number: 6.941

3. Sodium
- Atomic number: 11
- Symbol: Na
- Mass number: 22.989

4. Potassium
- Atomic number: 19
- Symbol: K
- Mass number: 39

5. Rubidium
- Atomic number: 85
- Symbol: Rb
- Mass number: 85.467

6. Caesium
- Atomic number: 55
- Symbol: Cs
- Mass number: 132.905

7. Actinium
- Atomic number: 89
- Symbol: Ac
- Mass number: 227.027

8. Thorium
- Atomic number: 92
- Symbol: Th
- Mass number: 232.034

9. Uranium
- Atomic number: 92
- Symbol: U
- Mass number: 238.028

10. Nitrogen
- Atomic number: 7
- Symbol: N
- Mass number: 14.007

11. Oxygen
- Atomic number: 8
- Symbol: O
- Mass number: 15.999

12. Fluorine
- Atomic number: 9
- Symbol: F
- Mass number: 18.998

13. Neon
- Atomic number: 10
- Symbol: Ne
- Mass number: 20.18

Lanthanide series
- Elements: La (138.905), Ce (140.116), Pr (144.242), Nd (144.924), Pm (150.36), Sm (151.962), Eu (157.25), Gd (158.925), Tb (162.50), Dy (162.933), Ho (164.933), Er (167.25), Tm (173.054), Lu (174.966)

Actinide series
- Elements: Ac (227.027), Th (232.034), Pa (231.038), U (238.028), Np (237.041), Pu (244.062), Am (243.061), Cm (247.070), Bk (247.070), Cf (251.079), Es (252.08), Fm (257.095), Md (258.098), No (259.101), Lr (262.106)

Andrei Gritsan, JHU

July 25, 2022

Atomic Physics

- Particles (electrons) occupy the lowest energy states

- No two identical particles (electrons) may have the same set of quantum numbers \((n, \ell, m, s_z) \)

(Pauli exclusion principle)

\[
|m| \leq \ell = 0, 1, 2, 3, \ldots < n
\]

\[
s_z = \pm \frac{\hbar}{2}
\]

\[
\psi_{n,\ell,m}(r, \theta, \phi) \propto R_{n,\ell}(r) Y_{\ell,m}(\theta, \phi)
\]

principal quantum number: \(n = 1, 2, 3, \ldots \)

orbital angular momentum: \(\ell = 0, 1, 2, 3, \ldots < n \)

projection of angular momentum:
\[
m = -\ell, (-\ell + 1), \ldots, 0, \ldots, (\ell - 1), \ell
\]

<table>
<thead>
<tr>
<th>Shell name</th>
<th>Subshell name</th>
<th>Subshell max electrons</th>
<th>Shell max electrons</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>1s</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>L</td>
<td>2s</td>
<td>2</td>
<td>2 + 6 = 8</td>
</tr>
<tr>
<td></td>
<td>2p</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>3s</td>
<td>2</td>
<td>2 + 6 + 10 = 18</td>
</tr>
<tr>
<td></td>
<td>3p</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3d</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>4s</td>
<td>2</td>
<td>2 + 6 + 10 + 14 = 32</td>
</tr>
<tr>
<td></td>
<td>4p</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4d</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4f</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>5s</td>
<td>2</td>
<td>2 + 6 + 10 + 14 + 18 = 50</td>
</tr>
<tr>
<td></td>
<td>5p</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5d</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5f</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5g</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>
Nuclear Physics
Nuclear binding energy

\[B(A, Z) = [Z(M_p + m_e) + (A - Z)M_n - M(A, Z)] \cdot c^2 \]
Abundance of the chemical elements on Earth

- Rock-forming elements
 - Si, O, Al, Fe, Mg
- Major industrial metals in red
 - Fe, Ni, Cu, Zn
- Precious metals in purple
 - Au, Pt, Pd
- Rare-earth elements in blue
 - La, Ce, Nd, Sm
- Rarest "metals"
 - Ir, Re, Os, Ru, Rh

Andrei Gritsan, JHU
July 25, 2022
Stable nuclide (nuclear species)

Stable isotopes (do not decay)

Type of Decay
- β^+
- β^-
- α
- Fission
- Proton
- Neutron
- Stable Nuclide
- Unknown

(Number of Neutrons) N

(Number of Protons) Z
Types of decay (weak force)

Weak interactions:

- too many neutrons:
 \[n \rightarrow p + e^- + \bar{\nu}_e \]
 including double-\(\beta \) decay

- too many protons:
 \[p \rightarrow n + e^+ + \nu_e \]
 including double-\(\beta \) decay

\[{}^{106}_{48}\text{Cd} \rightarrow {}^{106}_{46}\text{Pd} + 2e^+ + 2\nu_e \]

also electron capture
\[p + e^- \rightarrow n + \nu_e \]
Types of decay (strong force)

- Too many nucleons: fission (more next)
- Too many nucleons: eject α particle (2n2p)
 - Parent nucleus: uranium-238
 - α particle
 - Daughter nucleus: thorium-234
- Too many protons: eject proton
- Too many neutrons: eject neutron

Strong interactions:

- Eject proton
- Eject neutron

(Number of Protons) (Number of Neutrons)
Types of decay

Radioactive isotopes:

- β^+
- β^-
- α
- Fission
- Proton
- Neutron
- Stable Nuclide
- Unknown

Andrei Gritsan, JHU
July 25, 2022
Andrei Gritsan, JHU

Fission

Type of Decay
- β^+
- β^-
- α
- Fission
- Proton
- Neutron
- Stable Nuclide
- Unknown

too many nucleons: fission

induced nuclear fission

γ rays (energy)

neutrons

^{235}U

^{236}U

^{92}Kr

^{141}Ba
Fission

Chain reaction

$^{235}_{92}\text{U} + ^0_1\text{n} \rightarrow ^{140}_{56}\text{Ba} + ^{93}_{36}\text{Kr} + 3 ^0_1\text{n}$

(a) $^{235}_{92}\text{U} + ^0_1\text{n} \rightarrow ^{96}_{37}\text{Rb} + ^{137}_{55}\text{Cs} + 3 ^0_1\text{n}$

(b) $^{235}_{92}\text{U} + ^0_1\text{n} \rightarrow ^{90}_{38}\text{Sr} + ^{144}_{54}\text{Xe} + 2 ^0_1\text{n}$

(c) $^{235}_{92}\text{U} + ^0_1\text{n} \rightarrow ^{87}_{35}\text{Br} + ^{146}_{57}\text{La} + 3 ^0_1\text{n}$
Nature of Nuclear Force

Nuclear binding energy - key in understanding nuclear processes

\[B(A, Z) = [Z(M_p + m_e) + (A - Z)M_n - M(A, Z)] \cdot c^2 \]

Nuclear force - based on strong force, but works differently than binding force of quarks and baryons

neutron
color-neutral
charge-neutral

proton
color-neutral

no strong or EM force at large distance
Nature of Nuclear Force

Nuclear binding energy - key in understanding nuclear processes

\[B(A, Z) = [Z(M_p + m_e) + (A - Z)M_n - M(A, Z)] \cdot c^2 \]

strong force attraction and repulsion at shorter distances:

- **deuteron**
 - Isospin=0
 - L=0 (96%)

- **neutron**

- **proton**
Nature of Nuclear Force

Particle Physics perspective:

- **Quark Exchange**
 - Net charge remains constant.
 - Requires exchanges of quarks.

- **Meson Exchange**
 - Color-neutral exchange.
 - Color changes in exchange.

\[p \left\{ \begin{array}{c} u \\ u \\ d \end{array} \right\} p \rightarrow p \left\{ \begin{array}{c} u \\ u \\ d \end{array} \right\} p \]

\[n \left\{ \begin{array}{c} d \\ d \\ u \end{array} \right\} n \rightarrow n \left\{ \begin{array}{c} d \\ d \\ u \end{array} \right\} n \]

\[\pi^0 \rightarrow \text{color-neutral} \]
Nature of Nuclear Force

Yukawa potential at larger distances:

\[V(r) = g \cdot \frac{e^{-\frac{m_\pi c}{\hbar} r}}{r} \]

range \(d \sim \frac{\hbar}{m_\pi c} \sim 1.4 \text{ fm} \)

\[\sim 1.4 \times 10^{-15} \text{ m} \]

Compare for \(q\bar{q} \) (colored):

\[V_{QCD}(r) = -\frac{4\alpha_s}{3r} + kr \]
Nuclear Energy
Energy Sources

- **Fossil fuel** (current \sim 86%)

 petroleum, coal, natural gas

 - energy from the Sun stored in the past
 - limited supply 40–400 years, environmental concerns

- **Renewable energy** (current \sim 7%)

 sunlight, wind, hydro, biomass (&wood, waste),..

 - one way or another, mostly convert present Sun energy

- **Nuclear energy** (current \sim 7%)

 - uranium-235, plutonium-239 (fission)
 - supply 100’s years (fission), safety concerns
 - there is also fusion, but need technology
Energy Source: Sun as a "Nuclear Reactor"

- Both fossil fuel and renewable energy mostly pass energy from the Sun (past or present).
 - Sun – huge nuclear fusion reactor
 - supply: billions of years, 1 hour flux on Earth = 1 year demand

- Challenge with renewable energy technological:
 - collect enough Sun light
 - effectively convert and store collected energy
 - examples: photosynthesis by green plants; solar power panels
 - beyond the scope of this discussion
Sun as a "Nuclear Reactor"
Stable nuclide (nuclear species)

Nuclear binding energy - key in understanding nuclear processes

\[B(A, Z) = [Z(M_p + m_e) + (A - Z)M_n - M(A, Z)] \cdot c^2 \]
Sun as a "Nuclear Reactor"

\[\begin{align*}
\gamma & \quad \text{Gamma Ray} \\
\nu & \quad \text{Neutrino} \\
\nu & \quad \text{Neutrino} \\
\end{align*} \]

- Proton
- Neutron
- Positron

\[\begin{align*}
p & \quad \text{Proton} \\
n & \quad \text{Neutron} \\
\bar{v}_e & \quad \text{Antineutrino} \\
e^+ & \quad \text{Positron} \\
\end{align*} \]

Andrei Gritsan, JHU

LIV

July 25, 2022
Energy Source: Fuel

- combustion

 burn fuel (carbon)

 \[CH_4 + 2 O_2 \rightarrow CO_2 + 2 H_2O + \text{energy} \]

 (methane) + (oxygen) \rightarrow (carbon dioxide) + (water)

- nuclear fission

 \[n + ^{235}\text{U} \rightarrow ^{92}\text{Kr} + ^{141}\text{Ba} + 3 n + \text{energy} \]

- nuclear fusion

 \[^2\text{H} + ^3\text{H} \rightarrow ^4\text{He} + n + \text{energy} \]

- antimatter annihilation

 \[^1\text{H}^+ \text{ (matter)} + ^1\text{H}^- \text{ (antimatter)} \rightarrow \text{energy} \]

 science fiction (e.g. see Angels and Demons with Tom Hanks)
Nuclear Energy: Present

- Nuclear fission reactor