Possible Future Collider Experiments in Particle Physics

Andrei Gritsan

Johns Hopkins University

July 22, 2019

Johns Hopkins University QuarkNet Physics Workshop

Vision of the World by an Exp. Particle Physicist

A bird's-eye view on Electro-Weak Physics at ATLAS

A bird's-eye view on Electro-Weak Physics at CMS

Higgs $\rightarrow 4\ell$ boson yield

LHC and High-Lumi-LHC (next 20 years)

Heaviest known particles H⁰, W/Z, top in the PDG

H,W/Z, top: the mass

Fundamental Questions in Higgs (EW) Physics

- Is Higgs the SM boson?
 - does it connect to Dark Matter?
 - does it generate CP violation? (matter dominance)
 - is it elementary?
 - is it the only Scalar (spin-0++) particle ?
 - how does it couple to fermions, bosons, itself ?
 - what is the Higgs potential ?
 - what is the EW phase transition ?
 - why is its mass << Planck scale ?</p>

Fundamental Questions in Higgs (EW) Physics

- Early moments of the Universe
 - massless particles: B^0 and W^0 , W^+ , W^- ,...
 - all forces unify

- As Universe cools down
 - symmetry spontaneously breaks
 - weak interactions become weak (Z^0 , W^{\pm} mass)

10-44

10-37

– Higgs field – possible mechanism

 $\sqrt{\sqrt{v}}$

 $\Delta \Delta$

12x10⁹y (sec, yrs)

 \sim

102

3×105

3000

Stability of the Vacuum

- Higgs self-coupling $\lambda < 0$ at higher scale
 - may tunnel thru "potential barrier" \Rightarrow unstable Universe
 - tunneling time > Universe lifetime \Rightarrow metastable Universe
 - for $m_H \sim 126 \text{ GeV}/c^2$ and SM Higgs field \Rightarrow metastable

Proposed Future Experimental Higgs Program

Collider	Туре	\sqrt{s}	$\mathscr{P}\left[\% ight]$	N(Det.)	$\mathscr{L}_{\mathrm{inst}}$	L	Time	Refs.	Abbreviation			
			$[e^{-}/e^{+}]$		$[10^{34}] \mathrm{cm}^{-2}\mathrm{s}^{-1}$	$[ab^{-1}]$	[years]					
HL-LHC	pp	14 TeV	-	2	5	6.0	12	[10]	HL-LHC			
HE-LHC	pp	27 TeV	-	2	16	15.0	20	[10]	HE-LHC			
FCC-hh	pp	100 TeV	-	2	30	30.0	25	[1]	FCC-hh			
FCC-ee	ee	M_Z	0/0	2	100/200	150	4	[1]				
		$2M_W$	0/0	2	25	10	1-2					
		240 GeV	0/0	2	7	5	3		FCC-ee ₂₄₀			
		$2m_{top}$	0/0	2	0.8/1.4	1.5	5		FCC-ee ₃₆₅			
		_					(+1)	(1y SD	before $2m_{top}$ run)			
ILC	ee	250 GeV	$\pm 80/\pm 30$	1	1.35/2.7	2.0	11.5	[3,11]	ILC ₂₅₀			
		350 GeV	$\pm 80/\pm 30$	1	1.6	0.2	1		ILC350			
		500 GeV	$\pm 80/\pm 30$	1	1.8/3.6	4.0	8.5		ILC ₅₀₀			
							(+1)	(1y SD after 250 GeV run)				
CEPC	ee	M_Z	0/0	2	17/32	16	2	[2]	CEPC			
		$2M_W$	0/0	2	10	2.6	1					
		240 GeV	0/0	2	3	5.6	7					
CLIC	ee	380 GeV	$\pm 80/0$	1	1.5	1.0	8	[12]	CLIC ₃₈₀			
		1.5 TeV	$\pm 80/0$	1	3.7	2.5	7		CLIC ₁₅₀₀			
		3.0 TeV	$\pm 80/0$	1	6.0	5.0	8		CLIC ₃₀₀₀			
							(+4)	(2y SDs between energy stages				
LHeC	ep	1.3 TeV	-	1	0.8	1.0	15	[<mark>9</mark>]	LHeC			
HE-LHeC	ep	2.6 TeV	-	1	1.5	2.0	20	[1]	HE-LHeC			
FCC-eh	ep	3.5 TeV	-	1	1.5	2.0	25	[1]	FCC-eh			

arXiv.org:1905.03764

First: electron-positron colliders:

circular ones to be staged to proton-proton

CEPC: multiple candidate sites in China

ILC (Japan):

Linear collider with high-gradient superconducting acceleration Ultimate: 0.5-1 (?) TeV To secure funding: reduce cost by starting at 250 GeV (H factory)

CLIC (CERN):

Linear collider with high gradient normal-conducting acceleration Ultimate: multi-TeV (3) e+e- collisions Use technology to overcome challenges Stages, for physics and funding

FCC-ee/FCC-hh (CERN): CEPC/SppC (China):

Start as e+e- H factory Protons to extend energy frontier 100 km ring with 16T magnets Technology for ee: "standard"

CEPC: multiple candidate sites in China

Other:

LHeC/FCC-eh; extend LHC with minimal cost

ILC (Japan):

Linear collider with high-gradient superconducting acceleration Ultimate: 0.5-1(?) TeV

To secure funding: reduce cost by starting at 250 GeV (H factory)

CLIC (CERN):

Linear collider with high gradient normal-conducting acceleration Ultimate: multi-TeV (3) e+e- collisions Use technology to overcome challenges Stages, for physics and funding

FCC-ee/FCC-hh (CERN): CEPC/SppC (China):

Start as e+e- H factory Protons to extend energy frontier 100 km ring with 16T magnets Technology for ee: "standard"

FCC-ee cost: ~11.6B USD (7.1 is the tunnel)

FCC-hh cost: tunnel (above) + 17B

Stage-I: Higgs Factories

Timeline

Starting at T_0

	To			+5					+10					+15					+20				+26
ILC	0.5/ab 250 GeV					1.5/ab 250 GeV						1.0/ab 0.2/ab 2m _{top}			3/ab 500 GeV								
CEPC	5.6/ab 240 GeV					16/ N	/ab 1 _z	2.6 /ab 2M _w									SppC =>						
CLIC	1.0/ab 380 GeV							2.5/ab 1.5 TeV							5.0/ab => until +28 3.0 TeV						-28		
FCC	1: e	50/ab e, M _z)	10 ee,	0/ab 5/a , ^{2M} w ee, 24			GeV		1.7/ab ee, 2m _{top}													hh,eh =>
LHeC	0.06/ab					C).2/a	b			0.7	2/ab											
HE- LHC	10/ab per experiment in 20y																						
FCC eh/hh	20/ab per experiment in 25y																						

Timeline

Starting at the earliest time (FCC-hh independent of FCC-ee):

FCC(CERN) vision of the next 70 years

Precision of Higgs Couplings at Future Colliders

0.0 0.4 0.8 1.2 1.6 2.0

Higgs self-coupling and potential

Future of Higgs Physics

- Higgs is fundamentally new state mass-energy
 - a lot to be understood
 - rich program with LHC (till ~2024) and HL-LHC (till ~2038)
 - a lot of thinking about the next steps
 - two major directions of thinking (both Europe and Asia)

(A) linear e+e- collider as a Higgs factory staged to longer baseline = higher energy

(B) circular e+e- collider as a Higgs factory staged to pp collisions = much higher energy reach

it all comes down to cost / benefit analysis...

- where does US stand?

The Future of Particle Physics: "Snowmass" process

1982: Concentrate on the next collider: The concept of the SSC was born.

1984, 1986 Snowmass Studies on SSC reference design and physics

1988: High Energy Physics in the 1990s

Broader goal – more people (>500)

1990: Research Directions for the Decade

Physics opportunities at the SSC + Complementary opportunities

2001: A summer study on the future of particle physics

2013: Similar in its scope to 2001, but spread out through the year

It has become a decadal community planning process

CMS: arXiv:1809.05937

The Future of Particle Physics: Snowmass 2001

SNOWMASS 2001

the future of particle physics

Organized by the Division of Particles and Fields and the Division of Physics of Beams of the American Physical Society

http://www.snowmass2001.org

The Future of Particle Physics

Snowmass 2001 • June 30 - July 21

Snowmass Village, Colorado

Organized by the I & Division of Physics of Beams of the American Physical Se

Chris Quigg (FNAL)co-chair Sally Dawson (BNL) Paul Grannis (Stony Brook) David Gross (ITP/UCSB) Joseph Lykken (FNAL) Hitoshi Murayama (UC Berkeley) Chan Joshi (UCLA) René Ong (UCLA) Natalie Roe (LBNL) Heidi Schellman (Northwestern) Maria Spiropulu (Chicago)

APS

Ronald Davidson (PPPL) Alex Chao (SLAC) Alex Dragt (Marylan Gerry Dugan (Cornell) Norbert Holtkamp (SNS Thomas Roser (BNL) Ronald Ruth (SLAC) John Seeman (SLAC) James Strait (FNAL)

2001.org

& Lectures on Critical Technologies rganized by the IEEE Nuclear & Plasma Science

Outreach & Education Pro

ama, Fermi Nati P.O. Box 500, M.S. 122, Batavia, Illinois 60510-0500 E-mail: sazama@fnal.gov Telefax: 630/840-8585

The Future of Particle Physics: Snowmass 2013

http://www.snowmass2013.org/

Related Links

- ACCOMMODATIONS
 CONDOMINIUM
- COLORADO
 HOTELS
 - **VACATION RENTALS**
- HOUSE RENTALS
 CONDO RENTAL
- VACATION RENTALS
 SNOWMASS HOTELS
- VACATION CONDO
 DENVER RENTALS
 RENTALS

Buy this domain

The owner of **snowmass2013.org** is offering it for sale for an asking price of 499 USD!

The Future of Particle Physics: Snowmass 2013

ORGANIZED BY THE DIVISION OF PARTICLES AND FIELDS OF THE APS Hosted by the University of Minnesota

The planning process included more than a year of workshops. It presented a status of the field and exciting opportunities going forward. It did NOT prioritize

Charge: The American Physical Society's Division of Particles and Fields is initiating a long-term planning exercise for the high-energy physics community. Its goal is to develop the community's long-term physics aspirations. Its narrative will communicate the opportunities for discovery in high-energy physics to the broader scientific community and to the government.

The DPF is independent of funding agencies; free to define our science goals as a global community

Future of Particle Physics

2014 US strategic planning (P5), advise NSF and DOE through HEPAP (P5 = Particle Physics Project Prioritization Panel)

- Use the Higgs boson as a new tool for discovery
- Explore the unknown: new particles, interactions, and physical principles
- Pursue the physics associated with neutrino mass
- Identify the new physics of dark matter
- Understand cosmic acceleration: dark energy and inflation
- What is the nature of physics at the electroweak scale and beyond?
- What structures underlie the forces and matter in the universe?
- What is the nature of neutrino masses?
- What is the nature of dark matter in the universe?

Snowmass 2021

This is what we expect to happen:

Fall 2019: Finalize topics and cross-cutting categories, Select conveners, call for site selection for summer 2021

Spring 2020: Secure funding for workshops and overall plan Choose 2021 site, date, and duration

Fall 2020 – Spring 2021: Conduct workshops, prepare initial white papers

Summer 2021: Snowmass Summer Study.

Report due by December 2021

Parallel efforts in Europe and Asia...