Experimental Particles Physics: Search for the Origin of Mass and Matter

Andrei Gritsan

Johns Hopkins University

March 27, 2006

Graduate Student Seminar

OUTLINE

Experimental High Energy Physics Group at Jonns Hopkins

- Who we are
- What we are doing
- Why we are doing this
- How we do this
- Where you can contribute

Experimental High Energy Physics Group

Experimental HEP faculty at JHU:

```
Bruce Barnett (CDF and CMS)

Barry Blumenfeld (CDF and CMS)

Chih-Yung Chien (CMS)

Andrei Gritsan (BABAR and CMS)

Petar Maksimovic (CDF and CMS)

Morris Swartz (CMS)
```


- CDF experiment at proton-antiproton collider at Fermilab
- BABAR experiment at electron-positron collider at Stanford
- CMS near-future experiment at proton-proton collider in Europe

Experimental High Energy Physics Group

Postdoctoral researchers:

```
Satyajit Behari (CDF, at Fermilab)

Zijin Guo (BABAR, in Bloomberg)

Dongwook Kim (CMS, at Fermilab)
```


Graduate students:

```
Yanyan Gao (BABAR, in Bloomberg)

Mark Mathis (CDF, in Bloomberg)

Reid Mumford (CDF, at Fermilab)

Jennifer Pursley (CDF, at Fermilab)
```

expect new people to join

What We Know about Matter

Study the Standard Model of Matter

• Fermions (spin= $\frac{\hbar}{2}$) \Rightarrow occupy space and constitute matter

matter anti-matter quarks leptons anti-quarks anti-leptons $\begin{pmatrix} d \\ s \\ b \end{pmatrix} \begin{pmatrix} u \\ c \\ t \end{pmatrix} \begin{pmatrix} e \\ \mu \\ \tau \end{pmatrix} \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} \qquad \begin{pmatrix} \bar{d} \\ \bar{s} \\ \bar{b} \end{pmatrix} \begin{pmatrix} \bar{u} \\ \bar{c} \\ \bar{t} \end{pmatrix} \begin{pmatrix} \bar{e} \\ \bar{\mu} \\ \bar{\nu}_\mu \\ \bar{\nu}_\tau \end{pmatrix}$ -e/3 2e/3 -e 0 Q e/3 -2e/3 e 0

• "Forces" (bosons mediate interactions):

Electromagnetic (γ) Weak (Z^0, W^{\pm}) Strong (gluons)

Gravity (not in model yet...)

Standard Model of Interactions

Weak

EM (photon)

Strong (gluon)

- $d_L' \longrightarrow \underbrace{ \begin{array}{c} W^- \\ u_L \end{array} }$
- Weak interactions are special:
 - (1) change of quark "flavor" (e.g. $b \rightarrow u$) $|d'\rangle = V_{ud} \cdot |d\rangle + V_{us} \cdot |s\rangle + V_{ub} \cdot |b\rangle$
 - (2) couple "left-handed" fermions helicity $\lambda = \text{spin} \cdot \text{direction} = -\frac{1}{2}$
- Violate C harge and P arity symmetry might violate CP (?)

Fundamental Symmetries

Symmetries ⇒ conservation laws

Charge + Parity (mirror) transformation

Matter \iff Antimatter

• *CP* asymmetry \iff matter and antimatter difference

Look Beyond the "Standard Model"

- Why does MATTER dominate (Sakharov):
 - CP-asymmetry
 - baryon non-conservation
 - non-equilibrium

- Need something beyond the SM
 - large CP-asymmetry
 - dark matter ...
 - Higgs and mass hierarchy problem

Higgs Particle and "New Physics"

- "Naive" Standard Model \Rightarrow massless particles Higgs mechanism (math operation) \Rightarrow masses expect Higgs particle (heavy)
- Divergent Higgs mass
 - ⇒ cancellation with superpartners

quarks (spin=
$$\frac{1}{2}$$
) $\begin{pmatrix} d \\ s \\ b \end{pmatrix} \begin{pmatrix} u \\ c \\ t \end{pmatrix}$

bosons (spin=
$$1/0$$
) $W, Z/H$

quarks (spin=
$$\frac{1}{2}$$
) $\begin{pmatrix} d \\ s \\ b \end{pmatrix} \begin{pmatrix} u \\ c \\ t \end{pmatrix}$ squarks (spin=0) $\begin{pmatrix} \tilde{d} \\ \tilde{s} \\ \tilde{b} \end{pmatrix} \begin{pmatrix} \tilde{u} \\ \tilde{c} \\ \tilde{t} \end{pmatrix}$

$$\tilde{\chi}_i^0, \tilde{\chi}_i^{\pm}$$
 (spin= $\frac{1}{2}$) (dark matter?)

Access to New Particles

• Brute force: new particles at highest energy (e.g. CMS, CDF) (exceed current $E=mc^2\sim 100$ GeV)

• Virtual production: $\Delta E \Delta t \sim \hbar$ (e.g. BABAR and CDF)

Standard Model

new particles in loops

Bound Quarks: Mesons and Baryons

Producing New Matter

Smash at high energy

$$E = mc^2$$

Stanford Linear Accelerator Center

Producing New Matter: Near Future

Detecting Particles

• Example: B meson decay products on BABAR at SLAC

e.g.
$$B^0 \to \phi K^0 \to (K^+K^-)(\pi^+\pi^-)$$

Different detector subsystems

Detecting Particles at CMS

CMS Experiment

36 Nations, 160 Institutions, 2008 Scientists and Engineers (November 2003)

How It Looks: CDF Experiment

BABAR Silicon Vertex Detector Assembly

Modern Tracking Detectors

Example: CMS Forward Pixel Detector

- CMS Forward Pixel (optical survey at Fermilab):
 - 3 or 4 sensors on a panel
 - -2 panels back-to-back in a blade = 7 sensors
 - 12 blades in a half-disk
 - half-disks in a cylinder, cylinder in CMS

Need Good Vertex Resolution

- Silicon "alignment" with particle tracks crucial for precise particle detection: *BABAR* and CMS
- Other technical aspects of detector operation

What We Study

• Analysis of decay products:

Example: Angular Measurements

Quantum Mechanics

(•) measure amplitudes from their angular dependence:

$$\frac{d^{3}\Gamma}{d\cos\theta_{1}d\cos\theta_{2}d\Phi} \propto \left| \sum_{m=-1,0,1} A_{m} \times Y_{1,m}(\theta_{1},0) \times Y_{1,-m}(\pi - \theta_{2}, -\Phi) \right|^{2}$$

$$\propto \left\{ \begin{array}{c} 1 \\ \sin^2 \theta_1 \sin^2 \theta_2 \left(|A_{+1}|^2 + |A_{-1}|^2 \right) \end{array} \right\} + \begin{array}{c} \text{longitudinal} \\ \cos^2 \theta_1 \cos^2 \theta_2 |A_0|^2 \end{array}$$

$$+\frac{1}{2}\sin^2\theta_1\sin^2\theta_2\left[\cos 2\Phi \operatorname{Re}(A_{+1}A_{-1}^*) - \sin 2\Phi \operatorname{Im}(A_{+1}A_{-1}^*)\right]$$

$$+\frac{1}{4}\sin 2\theta_{1}\sin 2\theta_{2}\left[\cos \Phi \operatorname{Re}\left(A_{+1}A_{0}^{*}+A_{-1}A_{0}^{*}\right)-\sin \Phi \operatorname{Im}\left(A_{+1}A_{0}^{*}-A_{-1}A_{0}^{*}\right)\right]\right\}$$

Example: Polarization Puzzle

Polarization in $B o \phi K^*$

expected: $A_0 \gg A_+ \gg A_-$

measured: $A_0 \sim A_+$

Summary

- Origin of Matter and Mass:
 - Why do we have matter and no antimatter (CP violation)?
 - Can we produce dark matter in laboratory?
 - What is the origin of mass (Higgs)?
- On-going collider program at JHU:
 - CDF experiment at proton-antiproton collider at Fermilab
 - BABAR experiment at electron-positron collider at Stanford
 - CMS new frontier in 2007-2008
- Various projects:
 - silicon detectors: calibration, alignment, operation, simulation
 - data analysis: simulation, computer reconstruction, results

More information (and some graphics in this talk) on particle physics:

http://particleadventure.org/particleadventure/

http://pdg.lbl.gov/

http://www2.slac.stanford.edu/vvc/

http://public.web.cern.ch/Public/Welcome.html

http://www.fnal.gov/