Tetraquarks: 50 Years of Quark Model

Andrei Gritsan Johns Hopkins University

July 24, 2024

Johns Hopkins University

Johns Hopkins University QuarkNet Physics Workshop

Tetraquark candidates

• **arXiv:2306.07164**: Three states $X \rightarrow J/\psi J/\psi$

Tetraquark candidates

Elementary Particles

Arguments for higher Spin to be composite particles...

November 1974: 50 years ago

• Discovery of $J/\psi \rightarrow \mu^+ \mu^-$ helped to establish the quark model

2024: What is $X \rightarrow J/\psi J/\psi$?

• Natural to expect to be composed of $c, c, \overline{c}, \overline{c}$

One popular model is a "molecule" kind of a bound state of two mesons connected by a strong nuclear force...

Strong Force

• Nucleon (proton or neutron) is held together by the strong force

"color" (red, blue, green) is a charge in strong force

Strong Force

• Nucleon is held together by the strong force

"color" (red, blue, green) is a charge in strong force

Any object should be color-neutral (e.g red-blue-green)

Strong Force: Baryons

Strong Force: Mesons

• Meson is held together by the strong force

"color" (red, blue, green) is a charge in strong force

Spin = $0,1\hbar$,.. neutral color = $(r\bar{r} + b\bar{b} + g\bar{g})/\sqrt{3}$

Any object should be color-neutral (e.g rr+gg+bb)

Strong Force: Mesons

 $q\bar{q}$ Spin = 0 $q\bar{q}$ Spin = $1\hbar$ D_s^+ CS D^{0} сū $C\overline{S}$ cd D^{*0} си cd *+ *K*^{*0} $d\overline{s} \pi^0$ $d\overline{s}$ us η $\rho^0_{\bullet\bullet}\omega$ us π du du ud > $\bullet\pi^+$ γ^+ η_c ud η' $s\overline{u} J/\psi$ sū ϕ sđ sd K^* K K * () **)***0 UC dC $d\overline{c}$ D $s\overline{c}$ D_s^* note J/ψ

The Quark Model

• In principle possible color-neutral composite particles:

- Tetra-quarks: $q\bar{q}q\bar{q}$
- Penta-quarks: $q\bar{q}q\bar{q}q$ or $\bar{q}q\bar{q}\bar{q}\bar{q}\bar{q}$
- Glueballs: gg(g)
- Hybrids: linear combination of any of the above

First Tetra-quark Candidates

 $c\bar{c}$ and exotic mesons

July, 2024

4660 ★

- Found in $B \to XK, X \to \pi^+\pi^- J/\psi$ by Belle in 2003
 - possible $c\bar{q}q\bar{c}$, but not conclusive
 - may be molecule 2 D mesons or may be tetra-quark

Recent Tetra-quark Candidates

- What is special about the recent Tetra-quark candidates?
 - for the first time composed of 4 heavy $c, c, \overline{c}, \overline{c}, \overline{c}$
 - may allow us to understand the structure!
 - now need to measure its properties!

Back to the Strong Nuclear Force

• What holds nucleus together?

- it is still strong force, but more complicated:

Nature of the Nuclear Force

• What holds nucleus together?

Nuclear force - based on strong force, but works differently than binding force of mesons and baryons

no strong or EM force at large distance

.....

neutron color-neutral charge-neutral proton color-neutral (electric charge)

Nature of the Nuclear Force

It gets more complicated, but gluons still connect it all:

Nature of the Nuclear Force

2024: What is $X \rightarrow J/\psi J/\psi$?

One popular model is a "molecule" kind of a bound state of two mesons connected by a strong nuclear force like proton and neutron in a nucleus...

binding would be much weaker than in a nucleus or light "tetra-quarks"

Strong argument against "molecular" nature!

20

2024: What is $X \rightarrow J/\psi J/\psi$?

• True tetra-quark connects two colored objects (cc) and $(\bar{c}\bar{c})$ — it is an exotic meson

• We still need to learn a lot more about $X \dots$

The same mechanism in nucleons?

- If this happens in tetra-quarks, why not in protons?
 - there is evidence of $(qq)_{anticolor}$ binding in proton
 - final structure is superposition of all combinations

How to study the nature of \boldsymbol{X}

- If this happens in tetra-quarks, why not in protons?
 - follow spin correlations in decay chain
 - determine spin-parity quantum numbers

Determine the nature of X

Determine the nature of X

Determine the nature of X

Decay: Angular Distributions

Summary

- Quark model has been successful for ~50 years
 explains our existence
- Recent exotic states from quarks (?)

One popular model is a "molecule" kind of a bound state of two mesons connected by a strong nuclear force, like proton and neutron in a nucleus

Another — true tetra-quark connects two colored objects (*cc*) and ($\bar{c}\bar{c}$) through direct strong interactions like quarks in a proton or neutron

• Fundamental study of matter at quark level...

X composite particle