The 5th Force

Andrei Gritsan Johns Hopkins University

July 26, 2023

Johns Hopkins University

Johns Hopkins University QuarkNet Physics Workshop

How Many Forces do we know?

How Many Forces do we know?

- Quick Google search revealed 7 forces:
 - Frictional force
 - Tension force
 - Normal force
 - Air Resistance force
 - Applied force
 - Spring force
 - Gravitational force

. . .

How Many Fundamental Forces do we know?

- Quick Google search revealed 7 forces:
 - Frictional force
 - Tension force
 - Normal force
 - Air Resistance force
 - Applied force
 - Spring force
 - Gravitational force

Not fundamental forces (electro-magnetic origin)

What is Force?

 A force is a push or pull upon an object resulting from the object's interaction with another object

classical example of two skaters throwing ball to each other:

What is Force?

 A force is a push or pull upon an object resulting from the object's interaction with another object

 A fundamental force results from a fundamental interaction

Electromagnetic Interaction:

Force is not necessarily a single photon exchange

EM Interactions: Hydrogen Atom

$$\psi_{n,\ell,m}(r,\theta,\varphi) \propto R_{n,\ell}(r) Y_{\ell,m}(\theta,\varphi)$$
$$|m| \le \ell = 0, 1, 2, 3, \dots < n$$

Probability to find electron in (r, θ, φ) $|\psi_{n,\ell,m}(r, \theta, \varphi)|^2$

Re
$$Y_{\ell,m}(\theta,\varphi)$$
 $\ell = 0, m = 0$
 $\ell = 1$
 $\ell = 1$
 $\ell = 1$
 $\ell = 2$
 $\ell = 2$

$$\begin{split} Y_0^0(\theta,\varphi) &= \frac{1}{2}\sqrt{\frac{1}{\pi}} \\ Y_1^{-1}(\theta,\varphi) &= \frac{1}{2}\sqrt{\frac{3}{2\pi}}\sin\theta \, e^{-i\varphi} \\ Y_1^0(\theta,\varphi) &= \frac{1}{2}\sqrt{\frac{3}{\pi}}\cos\theta \\ Y_1^1(\theta,\varphi) &= \frac{-1}{2}\sqrt{\frac{3}{2\pi}}\sin\theta \, e^{i\varphi} \\ Y_2^{-2}(\theta,\varphi) &= \frac{1}{4}\sqrt{\frac{15}{2\pi}}\sin^2\theta \, e^{-2i\varphi} \\ Y_2^{-1}(\theta,\varphi) &= \frac{1}{2}\sqrt{\frac{15}{2\pi}}\sin\theta \, \cos\theta \, e^{-i\varphi} \\ Y_2^0(\theta,\varphi) &= \frac{1}{4}\sqrt{\frac{5}{\pi}} \left(3\cos^2\theta - 1\right) \\ Y_2^1(\theta,\varphi) &= \frac{-1}{2}\sqrt{\frac{15}{2\pi}}\sin\theta \, \cos\theta \, e^{i\varphi} \\ Y_2^2(\theta,\varphi) &= \frac{1}{4}\sqrt{\frac{15}{2\pi}}\sin\theta \, \cos\theta \, e^{i\varphi} \end{split}$$

EM Interactions: Atoms and Molecules

Periodic Table of Elements Showing Electron Shells

Andrei Gritsan, JHU

July 25, 2022

Strong Nuclear Force

• Nucleus is held together by the strong nuclear force

Strong Nuclear Force

It gets more complicated, but gluons still connect it all:

Weak Nuclear Force

- This weak interaction changes structure of the matter
- One could argue if it is more than force (not just pull or push)

Nuclear fusion (e.g. Sun):

Weak Nuclear Force

- This weak interaction changes structure of the matter
- One could argue if it is more than force (not just pull or push)

Gravitational Force

- Gravitational force is the weakest at elementary particle level
- Adds up to a large force on the scale of the planets (when other forces cancel)
- Dark matter revealed only through gravitational interactions so far...

expect at elementary level:

quantum theory of gravity is still in development...

dark matter χ

Elementary Particles

• Until recently, all known elementary particles were of two types:

Fermions (half-integer spin) occupy space (Fermi statistics: exclusion princ.) constitute matter (quarks, leptons)

$$S = 1\hbar$$

Bosons (integer spin) carry interactions (γ photons, g gluons, W^{\pm}, Z)

• One can create compose particles of any spin $S = \frac{N\hbar}{2}$, N = 0,1,2,..for example π^0 meson made of $q\bar{q}$ has S = 0but there was no elementary particle with no spin, until recently

Elementary Particles

- Hoson (discovered in 2012) Spin = 0 • Spin = $\frac{\hbar}{2}$ $e^{\pm}, \mu^{\pm}, \tau^{\pm}, \nu_e, \nu_\mu, \nu_\tau, \text{quarks...}$ matter $\gamma, Z, W^+, W^-, g_1, g_2, g_3, g_4, g_5, g_6, g_7, g_8$ • Spin = \hbar interactions • Spin = $\frac{3\hbar}{2}$ Not known (may be supersymmetric particle, e.g. gravitino) Not discovered, expect graviton G• Spin = $2\hbar$
 - Arguments for higher Spin to be composite particles...

Elementary Particles: Interactions

Elementary Particles: Interactions

• H boson carries interaction between matter particles

matter particles Created in the laboratory (LHC): CMS 138 fb⁻¹ (13 TeV) $K_f \frac{m_f}{\upsilon}$ or $\sqrt{K_V} \frac{m_V}{\upsilon}$ m_u=125.38 GeV р_{SM} = 37.5% lepton μ 10⁻¹ 10^{-2} Leptons and neutrinos Quarks 10^{-3} Force carriers Higgs boson H 10^{-4} Ratio to SM 1.2 quark *t* 1.05 100.8 0.95 0.6 10² 10^{-1} 10

Particle mass (GeV)

• H boson carries interaction between matter particles

matter particles Created in the laboratory (LHC): CMS 138 fb⁻¹ (13 TeV) $K_f \frac{m_f}{\upsilon}$ or $\sqrt{K_V} \frac{m_V}{\upsilon}$ m_u=125.38 GeV р_{SM} = 37.5% lepton μ 10⁻¹ 10^{-2} Leptons and neutrinos Quarks 10^{-3} Force carriers Higgs boson H 10^{-4} Ratio to SM 1.2 quark t1.05 0.8 0.95 0.6 10² 10⁻¹ 10 time Particle mass (GeV)

• H boson carries interaction between matter particles

• H boson may become the only quantum connection to dark matter (χ) (besides gravity)

• Search for dark matter (χ) H $\rightarrow \chi \chi$ (invisible) Competitive (or better) with direct detection of dark matter:

 $H \rightarrow \chi \chi$ (invisible)

The 4 Forces

The 5 Forces

Gravity

More Forces?

Gravity

The Big Picture

Scales in Particle Physics

Crisis of the Standard Models

Microscope to look deep: the LHC experiments

The Higgs Field in the SM

SM Higgs field
$$\varphi = \begin{pmatrix} G^+ \\ (v + H^0 + iG^0)/\sqrt{2} \end{pmatrix} \Rightarrow H^0 + \text{mass of } Z, W^+, W^-$$

LHC goal: excite the vacuum (Higgs field φ) \Rightarrow create the H^0 boson

$$V(\varphi) = \mu^2 \varphi^\dagger \varphi + \lambda^2 (\varphi^\dagger \varphi)^2$$

Hierarchy Problem

SM cannot predict m_H - measure

 $m_H = 125.26 \pm 0.20 \pm 0.08 \text{ GeV} \lll m_P$

Implications of the Hierarchy Problem

If BSM contributes:

$$--(SM)$$
 $--+$ $--(BSM)$ $--$

• We should see something like this:

• This motivates us to study Higgs boson to high precision

Our Microscope in a Nutshell

What we knew before 2012

- We did not know if the Higgs field (or boson) existed!
- Even if it were, was it the Standard Model Higgs boson?
- We did not know the mass! (there were indirect SM constraints)
- Two diagrams relevant to H in early days of LHC, couple to mass:

• Flip the time direction to produce it:

Producing the SM Higgs boson

Decay of the SM Higgs boson

• Golden channel both below $2m_W$ and above $2m_Z$ threshold best signal / background

CMS Experiment at the LF Fri 2010–Sep–24 02:2 Run 146511 Event S C.O.M. Energ

CMS on Track for Discovery

- In December 2011 excluded SM Higgs $127 < m_H < 600 \text{ GeV}$ tantalizing hint $m_H \sim 125 \text{ GeV}$
- In July 2012 expect for SM Higgs up to 6σ observation $H \rightarrow ZZ^{(*)}, \gamma\gamma, WW^{(*)}, b\bar{b}, \tau\tau$

"Opened the box" on June 14, 2012 (at CERN)

(later press-conference on July 4, 2012)

Two channels ZZ and 2y combined

Andrei Gritsan, JHU

^{9 July 2012} seminar at FNAL

Observed local excess of events

Andrei Gritsan, JHU

39

9 July 2012

seminar at FNAL

June 15, 2012

The Higgs boson: 2012

Press-conference on July 4, 2012

RESERVED

LHC Run-3 and Beyond

The Next Microscope (Proposed Collider)

Discovery of $H \to ZZ$ enabled plans for $e^+e^- \to Z^* \to ZH$ ($H \to ZZ$ in "reverse")

Ζ,γ Z,γ ~ 125 GeV Ζ Future e^+e^- Higgs Factory linear or circular, in Europe or Asia... (e.g. FCC at CERN)

What we want to know about the 5th force

Run-2 CMS 138 fb⁻¹ (13 TeV) Couples to matter-energy ์ m_н=125.38 GeV $p_{_{\rm SM}} = 37.5\%$ rates as ~ expected ר ק סר 10coupling $\propto m$ Mass: quantum corrections 10⁻² Lifetime: Leptons and neutrinos Quarks faster decay to new states? 10⁻³ to dark matter?... Force carriers Higgs boson 10^{-4} Quantum numbers? Ratio to SM expect $J^{PC} = 0^{++}$ as vacuum 10^{0} 10^{1} 0.6 10² New source of *CP* violation? 10^{-1} 10 Particle mass (GeV) • Any hints of EFT effects ~ $\left(\frac{v}{M}\right)^2$?... \Rightarrow study full kinematics Higgs field(s) and potential? \Rightarrow new states or HHH interaction

What if there are more Higgs Fields?

• SM Higgs field
$$\varphi = \begin{pmatrix} G^+ \\ (v + H^0 + iG^0)/\sqrt{2} \end{pmatrix} \Rightarrow H^0 + \text{mass of } Z, W^+, W^-$$

 \mathbf{i}

• What if 2 Higgs fields $\varphi_1, \varphi_2 \Rightarrow$ mass of $Z, W^+, W^- + H^0, H^{\pm}, H', A$

Higgs Potential and Stability of the Vacuum

