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The Nobel Prize in Physics 2013
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The Higgs Particle

• The Nobel prize for the Higgs mechanism

– theoretical idea ∼50 years ago

• This idea became the reality with the Higgs particle

– experimental discovery <2 years ago
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How many Bosons did we know in 2012?

• We knew 12 bosons: photon, Z0, W+, W−, 8 gluons

• Photons (γ) are massless vector (spin=h̄=1) bosons

• Z0 and W± are heavy → weak force

• Gauge bosons in unified electro-weak theory

after spontaneous symmetry breaking

|γ⟩ = cos θW |B0⟩+ sin θW |W 0⟩ light (massless)

|Z0⟩ = sin θW |B0⟩+ cos θW |W 0⟩ heavy

θW - Weak mixing (Weinberg) angle
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Path from Light to Heavy

• Early moments of the Universe

– massless particles: B0 and W 0, W+, W−,..

– all forces unify

-1.5 -1 -0.5 0 0.5 1 1.5
-0.2

0

0.2

0.4

0.6

0.8

1

• As Universe cools down

– symmetry spontaneously breaks

– weak interactions become weak (Z0, W± mass)

– Higgs field – possible mechanism
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The Englert-Brout-Higgs Mechanism

• Symmetry spontaneously breaks near minimum (vacuum) energy

of Higgs field (φ1,φ2,φ3,φ4)
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• Higgs particle described by one component of the Higgs field

h = φ1 − v

• The other Higgs field components φ2,φ3,φ4 couple to Weak bosons

Z0, W−, W+ and generate mass, longitudinal polarization (not γ)
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Idea - the Higgs Field

• Empty space filled with invisible ”force” – the Higgs field
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Idea - the Higgs Field

• The Higgs field clusters around the particle – gives mass
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Idea - the Higgs Field

• Pass energy into the Higgs field (no particle)
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Idea - the Higgs Field

• The Higgs particle cluster created from the Higgs field
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What is Higgs?

• There are several phenomena:

– Peter Higgs

– Higgs mechanism

– Higgs field

– Higgs particle (boson)

• People sometimes confuse these phenomena

– especially the last two

• We have hard evidence for two:

– 1964 article by Peter Higgs in Physics Review Letters

– 2012 discovery of a new Boson by CMS and ATLAS
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More on the History of the Higgs Mechanism

• In fact, there are several names of the Higgs mechanism:

– Brout-Englert-Higgs mechanism

– Higgs-Brout-Englert-Guralnik-Hagen-Kibble mechanism

– Anderson-Higgs mechanism

– Higgs mechanism is just simpler

– all for authors of independent papers on the topic

• Partly due to ironic history with the paper by Higgs:

– rejected from European Physics Letters

“of no obvious relevance to physics”

– added a reference to predicting a new particle
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More on the History of the Higgs Mechanism

1950: Ginzburg- Landau model of superconductivity

1959-60: Nambu- Goldstone bosons in spontaneous symmetry breaking

1962: P. Anderson - nonrelativistic example

1964: R. Brout & F. Englert; P. Higgs; G. Guralnik & C. R. Hagen & T. Kibble

1967: Incorporated into Standard Model by S. Weinberg and A. Salam
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All Elementary Particles get Mass from Higgs Field

• Fermions S = h̄
2 (matter)

leptons

quarks

(anti-matter)

• Bosons S = h̄ (force carries):

← massless

(weak force bosons mass)

EM strong
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Mass of Matter

• Most of our mass is protons and neutrons

– most mass is energy of quark-gluon soup: mpc
2 = E

Mass from quark-glue soup energy:

mpc
2 = 938 MeV ≃ 1.7× 10−27 kg

Mass from the Higgs field:

muc
2 ∼ 3 MeV, mdc

2 ∼ 5 MeV

but Higgs field is very important
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Stability of the Vacuum

• Higgs self-coupling λ < 0 at higher scale

– may tunnel thru ”potential barrier” ⇒ unstable Universe

– tunneling time > Universe lifetime ⇒ metastable Universe

– for mH ∼ 126 GeV/c2 and SM Higgs field ⇒ metastable
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The Large Hadron Collider

one of the coldest places (1.9 K, 96t He)

one of the hottest places (1016 ◦C)

vacuum emptier than outer space (10−10 Torr)

the fastest racetrack (vp = 0.999999991c)

the largest electronic instrument (27 km)
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Study of the H0 boson

18

Produce Detect
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Produce Detect

..φ1..φ2..

Study of the H0 boson
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Produce Detect
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Study of the H0 boson
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LHC schedule: 10 year plan

21

Run-2

~40 fb-1 ~120 fb-1 ~300 fb-1

LHC Epp=13 TeV, Phase-1 thru 2023/24

Run-3 thru 2023/24

Phase-2 with Run-4 
plan to start in 2026,
Snowmass: ~3000 fb-1 

Legacy: Run-1 (2010-2012)
 ~25 fb-1 at 7 and 8 TeV

28 July 2017

~80 fb-1
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Particles → Resonances → “Bumps”
We often see particles as “resonances” 

— most particles are not stable 
— reconstruct from their decay products

28 July 2017
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Higgs boson yield

23 28 July 2017

~80 events in Run-1 + Run-2 
~20 events in Run-1 (2011+12)

H(125)0 → 4ℓ  

ZZ→ 4ℓ  

Z→4ℓ  
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Run-2 of LHC
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New Pixel Detector in CMS Now (“Phase-1”)

26

first stable beams on May 23, 2017

66 million channels in 1440 modules → 124 million channels in 1856 modules
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The Silicon Pixel Detector
1440 digital pixel ”cameras”
65 million channels, ∼100× 150µm
Alignment: hardware and software
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H(125)0,H,A,H+,H- 
more Higgs bosons

Study of the Higgs field φ
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…

H(125)0 → VV 
H

W,Z

W,Z

+|Dμφ|2

+Study HVV or |Dμφ|2

pdg.lbl.gov
(LHC Run 1)

CMS (Run 2): mH = 125.26 ± 0.20(stat) ± 0.08(syst) GeV

Follow PDG check-list
— mass
— lifetime
— width
— quantum numbers
— coupling strength

http://pdg.lbl.gov
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+Study Hff or ψiyijψjφ

H

b, ⌧, µ

b, ⌧, µ

ψiyijψjφ +h.c.

H(125)0 → ff 

Discovery of H(125)0 → ττ
All Elementary Particles get Mass from Higgs Field

• Fermions S = h̄
2 (matter)

leptons

quarks

(anti-matter)

• Bosons S = h̄ (force carries):

← massless

(weak force bosons mass)

EM strong
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+Study Hff or ψiyijψjφ
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+Study HHH or V(φ)
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FIG. 1: Sample Feynman graphs contributing to pp → hh+X. Graphs of type (a) yield vanishing contributions due to color
conservation.

cal configuration†, which is characterized by a large di-
higgs invariant mass, but with a potentially smaller Higgs
s-channel suppression than encountered in the back-to-
back configuration of gg → hh.
The goal of this paper is to provide a comparative

study of the prospects of the measurement of the trilinear
Higgs coupling applying contemporary simulation and
analysis techniques. In the light of recent LHC measure-
ments, we focus our eventual analyses on mh = 125 GeV.
However, we also put this particular mass into the con-
text of a complete discussion of the sensitivity towards
the trilinear Higgs coupling over the entire Higgs mass
range mh

<∼ 1 TeV. As we will see, mh ≃ 125 GeV is a
rather special case. Since Higgs self-coupling measure-
ments involve end-of-lifetime luminosities we base our
analyses on a center-of-mass energy of 14 TeV.
We begin with a discussion of some general aspects

of double Higgs production, before we review inclusive
searches for mh = 125 GeV in the pp → hh+X channel
in Sec. II C. We discuss boosted Higgs final states in pp →
hh+X in Sec. II D before we discuss pp → hh+j+X with
the Higgses recoiling against a hard jet in Sec. III. Doing
so we investigate the potential sensitivity at the parton-
and signal-level to define an analysis strategy before we
apply it to the fully showered and hadronized final state.
We give our conclusions in Sec. IV.

II. HIGGS PAIR PRODUCTION AT THE LHC

A. General Remarks

Inclusive Higgs pair production has already been stud-
ied in Refs. [14–17] so we limit ourselves to the details
that are relevant for our analysis.
Higgs pairs are produced at hadron colliders such as

the LHC via a range of partonic subprocesses, the most
dominant of which are depicted in Fig. 1. An approxima-
tion which is often employed in phenomenological studies
is the heavy top quark limit, which gives rise to effective

†The phenomenology of such configurations can also be treated sep-
arately from radiative correction contributions to pp → hh+X.

ggh and gghh interactions [20]
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Studying these operators in the hh+X final state should
in principle allow the Higgs self-coupling to be con-
strained via the relative contribution of trilinear and
quartic interactions to the integrated cross section. Note
that the operators in Eq. (3) have different signs which
indicates important interference between the (nested)
three- and four point contributions to pp → hh + X al-
ready at the effective theory level.
On the other hand, it is known that the effective theory

of Eq. (3) insufficiently reproduces all kinematical prop-
erties of the full theory if the interactions are probed
at momentum transfers Q2 >∼ m2

t [11] and the massive
quark loops are resolved. Since our analysis partly re-
lies on boosted final states, we need to take into account
the full one-loop contribution to dihiggs production to
realistically model the phenomenology.

B. Parton-level considerations

In order to properly take into account the full dynam-
ics of Higgs pair production in the SM we have imple-
mented the matrix element that follows from Fig. 1 in
the Vbfnlo framework [21] with the help of the Fey-

nArts/FormCalc/LoopTools packages [22], with
modifications such to include a non-SM trilinear Higgs
coupling‡. Our setup allows us to obtain event files ac-
cording to the Les Houches standard [23], which can be
straightforwardly interfaced to parton showers. Decay
correlations are trivially incorporated due to the spin-0
nature of the SM Higgs boson.

‡The signal Monte Carlo code underlying this study is planned to
become part of the next update of Vbfnlo and is available upon
request until then.
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+Search for more Higgs bosons: φ1, φ2 …

more involved Higgs field ..φ1..φ2..

H(125)0,H,A,H+,H- more Higgs bosons,
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Study of the Higgs field φ

H(125)0 is a completely new state of matter-energy

— the major LHC discovery so far

— yet it is just an extinct particle 

— what remains in the Higgs field 

— it is all around us 

— gives mass to fermions, bosons

— its potential remains to be tested, implication for our existence


