What If the Particle World Were Different?

Andrei Gritsan Johns Hopkins University

August, 2008 JHU Quarknet Meeting

The Particle World: the Smallest to the Largest

• On the smallest and largest scale:

what are we made of and why

(Galaxy cluster 1E 0657-66: X-ray, Optical, Grav. Lensing)

From Molecules to Quarks

• XXth century: reaching deep into matter, Quarks

Elementary Particles

"Periodic Table" of Baryons: Proton, Neutron,...

• Three quarks make up a Baryon:

Like Periodic Table of Atoms

Andrei Gritsan, JHU

"Periodic Table" of Mesons

• Quark-antiquark make up a Meson:

How do We "See" Particles

• We "see" semi-stable particles by "tracks" in matter:

• Table-top illustrations

• Complex multi-ton detectors

Weak Interactions

C

- Massive carries \Rightarrow weak (short-range) mass \sim 80-90 GeV
 - Special interactions:
 - change type of quark

change families

left-handed fermions

violate Parity and C

violate *CP* symmetry

- What if muon were the lightest fermion (no electron)
- Normally muon decays:

• We would get a muonic atom:

• Size changes:

radius $r = \frac{4\pi\epsilon_0\hbar^2}{m_\mu e^2}$, 200 smaller !

Hydrogen radius

$$r = \frac{4\pi\epsilon_0\hbar^2}{m_e e^2} = 5 \times 10^{-11} \text{ m}$$

• However muonic hydrogen would decay:

• Not very interesting universe

- filled with neutral "balls" of neutrons and neutrinos

• Normally neutron is not stable (life $\tau \sim 886$ seconds) $m(n) > m(p) + m(e) + m(\nu_e)$

• But stable in the muonic world:

 $\mathsf{m}(n) < \mathsf{m}(p) + \mathsf{m}(\mu) + \mathsf{m}(\nu_{\mu})$

(2) Scenario: Another Neutron World

- Again, normally proton is stable and neutron decays: $m(n) > m(p) + m(e) + m(\nu_e)$
- Why is m(n) > m(p)
 - -m(p) = 938 MeV, m(n) m(p) = 1.3 MeV
 - tiny difference makes a big difference!
 - naively expect m(p) > m(n) if u and d were the same
 - $\operatorname{but} \operatorname{m}(d) > \operatorname{m}(u)$
- New scenario:
 - what if m(d) < m(u)

(2) Scenario: Another Neutron World

• If m(d) < m(u), proton decays:

• Consequence: no Hydrogen, no H_20

– still have He^4 , rapid nn fusion, instead of slower pp

(3) Scenario: No First Family

• What if the second family of fermions were the first?

• Would we get muonic atoms?

(3) Scenario: No First Family

• Would we get muonic atoms?

- probably yes, but only one of them...

• No atoms, molecules, or anything bigger...

Andrei Gritsan, JHU

(3) Scenario: No First Family

• Only one baryon with an s quark

- because c is much heavier (unlike u and d)

• No stable baryons with c quarks

Andrei Gritsan, JHU

(4) Scenario: Only First Family

• What if we had only first family of fermions?

• Would the world around us be the same?

(4) Scenario: Only First Family

• Would the world around us be the same?

• Yes, if it already existed, almost no difference.

(4) Scenario: Only First Family

- However:
 - laws of physics different in Universe evolution
 - in early moments all families equal
 - \Rightarrow matter-antimatter asymmetry

- With only first family we will not have much
 - everything annihilate to photons...

What Have We Learned?

- Parameters of elementary particles are essential
- Small change in mass leads to dramatic change in universe
 - electron mass
 - proton and neutron (u and d quark) mass
 - fermion families
- Do we understand these parameters?
 - unfortunately not yet
 - but believe secrets of the universe are behind them
 - and believe we are about to uncover them...

Look Beyond the Standard Model

- Mysterious *H*iggs field
 - gives mass to particles

- Need something beyond the SM
 - large matter-dominance
 - dark matter
 - light Higgs

Possible Extension: Super-Symmetry

ds

- New (super)symmetry: $Q|fermion\rangle = |boson\rangle$ $Q|boson\rangle = |fermion\rangle$
- Solve:
 - (1) natural light Higgs
 - (2) dark matter lightest $\tilde{\chi}_1^0$

(3) large matter/antimatter

• Just around the corner in mass...

Reaching Highest Energy

Large Hadron Collider: Fall 2008

Thanks to my mentor at LBNL: Robert N. Cahn for inspiring ideas about standard model parameters in everyday life, see *Reviews of Modern Physics, Vol. 68, No. 3, July 1996*