The Uncertainty Principle, the Quarks, and the Search for New Physics

Andrei Gritsan

Johns Hopkins University

March 29, 2007 JHU Physics Colloquium

Outline

• The Quarks

what we know and do not know in particle physics

- The Uncertainty Principle quantum mechanics with elementary particles
- The Search for New Physics set up an experiment with spin correlations

Particle Physics: Trying to Reach Deep

• On the smallest and largest scale:

what are we made of and why

(Galaxy cluster 1E 0657-66: X-ray, Optical, Grav. Lensing)

Particle Physics What We Already Know

From Molecules to Quarks

• XXth century: reaching deep into matter, Quarks

Andrei Gritsan, JHU

"Periodic Table" of Baryons: Proton, Neutron,...

• Three quarks make up a Baryon:

Like Periodic Table of Atoms

"Periodic Table" of Mesons

• Quark-antiquark make up a Meson:

How do We "See" Particles

• We "see" semi-stable particles by "tracks" in matter:

• Table-top illustrations

• Complex multi-ton detectors

How do We "See" Particles

• Most particles live too short to be "seen" directly

- "see" decay products:

$$c\tau = 4 \times 10^{-15} \text{m}$$

 $\pi - - - \mathbf{k}^{*0} - - \mathbf{k}^{\dagger}$

• Time (decay) and energy (resonance) amplitudes:

$$\begin{aligned} \mathbf{A}(t) &= \mathbf{A}(0)e^{iE_0t/\hbar}e^{-\Gamma_0t/2\hbar} \quad \Rightarrow \quad |\mathbf{A}(t)|^2 \propto e^{-\Gamma_0t/\hbar} = e^{-t/\tau_0} \\ \mathbf{A}(E) &= \int \mathbf{A}(t)e^{iEt/\hbar} \mathrm{d}t = \frac{C}{(E-E_0)-i\Gamma_0/2} \qquad \Gamma_0 = \frac{\hbar}{\tau_0} \end{aligned}$$

Unstable Particles

- The Uncertainty Principle (part 1): $\Gamma_0 \times \tau_0 = \hbar$ compare: $\Delta E \times \Delta t \sim \hbar$
- Probability $\propto |A(m)|^2$

Decay Dynamics

Unstable particles decay
 Feynman diagram:

 Decay ⇒ study elementary particles and interactions (this "strong" decay is mostly understood)

Decay Kinematics

• We often understand decay dynamics through kinematics

• Conservation of orbital momentum:

Weak Interactions

- Massive carries \Rightarrow weak (short-range) mass \sim 80-90 GeV
 - Special interactions: change type of quark
 - change families
 - left-handed fermions $\bar{q}\gamma^{\mu}(1-\gamma^5)q$

violate Parity and C

violate CP symmetry

Particle Physics What We do not Know

Andrei Gritsan, JHU

March 29, 2007

Look Beyond the Standard Model

- Why does matter dominate (Sakharov):
 - *CP*-asymmetry
 - baryon non-conservation
 - non-equilibrium
- Mysterious *H*iggs field
 - gives mass to particles
- Need something beyond the SM
 - large *CP*-asymmetry
 - dark matter
 - light Higgs

Possible Extension: Super-Symmetry

- New (super)symmetry:
 Q|fermion>=|boson>
 Q|boson>=|fermion>
- Solve:
- natural light
 *H*iggs fields
- (2) dark matter lightest $\tilde{\chi}_1^0$
- (3) large CP phases

Just around the corner in mass...

Particle Physics How to Reach Beyond

Reaching Highest Energy

Large Hadron Collider: 2008

The Uncertainty Principle

- "Heavy" objects for a short instant Δt :
 - $\Delta E \times \Delta t \sim \hbar$ get $\tilde{m}c^2 \sim \Delta E \sim 500 {\rm GeV}$

• Possible:

Observation of "Penguins" • 1975: importance of "penguin", observation on CLEO-II: 1997: gluonic "penguin" 1993: EM "penguin" **n**′ K harder due to gluons • rate $\sim 3.5 \times 10^{-4}$ fun Ph.D. discovery best New Physics limits

• "Physics Book:" measure size or phase of $A = |A| \times e^{i\phi}$

New Test: Polarization

Polarization Experiment

New Physics in Polarization

Particle Physics Laboratory

Producing the B Mesons

• Kinematics:

Producing the B Mesons

Producing the B Mesons

Andrei Gritsan, JHU

Kinematics of the Decay

Reconstructing Kinematics in the Detector

The Heart of the BABAR Detector

The BABAR Detector

Andrei Gritsan, JHU

Relation Experiment

Finding the Signal

• Angular correlations \Rightarrow spin projection

Angular Measurements

Angular Distribution in Slices

- Expected only $|A_0|^2$
- Polarization basis (like photon) $A_{\parallel,\perp} = (A_+ \pm A_-)/\sqrt{2}$

The Result: Polarization Anomaly

- With two angles: $\cos \theta_1 (K^*)$ $\cos\theta_2 (\phi)$ **~ ^{@−}** |<u>A</u>₀|² $\times |Y_1^0(\theta)|^2$ $|A_{+}|^{2} + |A_{-}|^{2} \times |Y_{1}^{\pm 1}(\theta)|^{2}$ 40 4($\Rightarrow |A_0|^2 \simeq |A_+|^2 + |A_-|^2$ 2020 0 0_{1}^{L} 0 0 H₁ H₂
- Polarization anomaly:

 $|A_0|^2/(|A_+|^2 + |A_-|^2 + |A_0|^2) = 0.506 \pm 0.040 \pm 0.015 \neq 1$

The Results

- Complex analysis with 12 independent results:
- $\begin{array}{ll}B \text{ (matter):} & |A_0|, |A_+|, |A_-|, \arg(A_0), \arg(A_+), \arg(A_-)\\ \bar{B} \text{ (antimatter):} & |\bar{A}_0|, |\bar{A}_+|, |\bar{A}_-|, \arg(\bar{A}_0), \arg(\bar{A}_+), \arg(\bar{A}_-)\end{array}$

Spin Does Not Flip

• Observation $|A_0|^2 \simeq |A_+|^2 \gg |A_-|^2$ violates expectation

• It works: $B \to \rho^+ \rho^- |A_0|^2 / (|A_+|^2 + |A_-|^2 + |A_0|^2) = 0.968 \pm 0.023$

no loop contribution

ideal for *CP* studies in SM (seminar last December)

Scrambling to Explain A_+

"Annihilation" mechanism

gluon to other quark unlikely $\sim 1/m_B$

need to cancel A_0

• "Rescattering" mechanism (final state interaction)

spin-flip heavy > 2GeV states violates both $|A_0|^2 \gg |A_{\pm}|^2$ and $|A_+|^2 \gg |A_-|^2$

Try Different Spin of K^*

• $B^0 \to \phi K_2^* (1430)^0$ (spin-2)

- would also expect "annihilation" or "rescattering"

• No anomaly:

 $|A_0|^2/(|A_+|^2 + |A_-|^2 + |A_0|^2) = 0.853^{+0.061}_{-0.069} \pm 0.036 \gg 0.5$

• Angular distribution:

Intriguing Possibility of New Physics

scalar (or tensor) interaction $B \xrightarrow{\phi} A \xrightarrow{A_0} A \xrightarrow{A_0} A \xrightarrow{b} \xrightarrow{S_R} \xrightarrow{S_R}$

ideal origin of A_+ exotic $\bar{q}(1+\gamma^5)q$

supersymmetry

less ideal $\bar{q}\gamma^{\mu}(1+\gamma^5)q$

Summary: the Uncertainty Principle, the Quarks, and the Search for New Physics

- Particles physics: Quarks, etc...
 - very successful
 - incomplete
- Searching for New Physics
 - get to large mass at LHC in 2008
- Use Uncertainty Principle
 - look for hints
 - polarization puzzle

Phys. Rev. Lett. 98, 051801 (2007)

- first hints (?) would complement LHC discoveries

ohns Hopkins BABAR Group

00

Zijin Yanyan

BACKUP SLIDES

Loops "penguin" loop mixing "box" Image: mixing to penguin to p

• *B*-meson physics: test $A = |A| \times e^{i\phi}$

(1) transition rate $|A|^2$ (2) phase $\phi = \arg(A)$

Best constraints on supersymmetry and New Physics

Computing and Analysis

• $BABAR \sim Petabyte$ of data

> billion "events" (B's are minority)

(1) Huge combinatorics, reduce to few 1000 events

$$\vec{x}_j = (m_B, m_\phi, m_{K^*}, \theta_1, \theta_2, \Phi, \ldots)$$

(2) Extract \sim few 100 signal events and parameters

likelihood
$$\mathcal{L} = \exp\left(-\sum_{i} n_{i}\right) \prod_{j=1}^{N} \left(\sum_{i} n_{i} \mathcal{P}_{i}(\vec{x}_{j}; \vec{\xi})\right) = maximum$$

